Approximately Gaussian marginals and the hyperplane conjecture
نویسنده
چکیده
We discuss connections between certain well-known open problems related to the uniform measure on a high-dimensional convex body. In particular, we show that the “thin shell conjecture” implies the “hyperplane conjecture”. This extends a result by K. Ball, according to which the stronger “spectral gap conjecture” implies the “hyperplane conjecture”.
منابع مشابه
How to recognize convexity of a set from its marginals
We investigate the regularity of the marginals onto hyperplanes for sets of finite perimeter. We prove, in particular, that if a set of finite perimeter has log-concave marginals onto a.e. hyperplane then the set is convex.
متن کاملProperties of Bethe Free Energies and Message Passing in Gaussian Models
We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. We define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals, derive a lower and an upper bound on the fractional Bethe free energy and establish a necessary condition for the lower bound to be b...
متن کاملBounds on the Bethe Free Energy for Gaussian Networks
We address the problem of computing approximate marginals in Gaussian probabilistic models by using mean field and fractional Bethe approximations. As an extension of Welling and Teh (2001), we define the Gaussian fractional Bethe free energy in terms of the moment parameters of the approximate marginals and derive an upper and lower bound for it. We give necessary conditions for the Gaussian f...
متن کاملSpatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملTail-sensitive Gaussian asymptotics for marginals of concentrated measures in high dimension
If the Euclidean norm | · | is strongly concentrated with respect to a measure μ, the average distribution of an average marginal of μ has Gaussian asymptotics that captures tail behaviour. If the marginals of μ have exponential moments, Gaussian asymptotics for the distribution of the average marginal implies Gaussian asymptotics for the distribution of most individual marginals. We show appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010